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The flat histogram Monte Carlo algorithms have been successfully used in many prob-
lems in scientific computing.However, there is no a rigorous theory for the convergence
of the algorithms. In this paper, a modified flat histogram algorithm is presented and
its convergence is studied. The convergence of the multicanonical algorithm and the
Wang-Landau algorithm is argued based on their relations to the modified algorithm.
The numerical results show the superiority of the modified algorithm to the multicanon-
ical and Wang-Landau algorithms.
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1. INTRODUCTION

The flat histogram Monte Carlo algorithms(1,2) have been successfully used in
many problems in scientific computing, e.g., spin glasses simulations(2), protein
folding(3,4), Lennard-Jone glass(5), and others. However, there is no a rigorous the-
ory for the convergence of the algorithms. In this paper, we present a modified flat
histogram algorithm and study its convergence. We then argue for the convergence
of the multicanonical algorithm(1) and the Wang-Landau (WL) algorithm(2) based
on their relations to the modified algorithm, although the argument may not be
very strict.

The remaining part of this paper is organized as follows. In Section 2, we
present the modified algorithm. In Section 3, we discuss the convergence of the flat
histogram algorithms. In Section 4, we present the numerical results of the modified

1 Department of Statistics, Texas A&M University, College Station, TX 77843-3143, USA;
e-mail: fliang@stat.tamu.edu

511

0022-4715/06/0200-0511/0 C© 2006 Springer Science+Business Media, Inc.



512 Liang

algorithm on a simple example with a comparison study with the multicanonical
and WL algorithms.

2. CONTOUR MONTE CARLO

Suppose that we are working on the following Boltzmann distribution,

f (x) = 1

Z
exp{−H (x)/τ }, x ∈ X , (1)

where Z = ∫
X exp{−H (x)/τ }dx is the partition function, τ is the temperature,

X is the phase space, and H (x) is the energy function. For a complex system, the
energy function has often many local energy minima separated by high energy
barriers. In the following, we present a modified flat histogram algorithm, the
so-called contour Monte Carlo (CMC), for simulation from f (x).

Suppose that the phase space has been partitioned according to a chosen
parameterization into m disjoint subregions. For example, the partition can be
made according to the microcanonical energy, and the m disjoint subregions are as
follows: E1 = {x : H (x) ≤ h1}, E2 = {x : h1 < H (x) ≤ h2}, . . ., Em−1 = {x :
hm−2 < H (x) ≤ hm−1}, and Em = {x : H (x) > hm−1}, where h1, . . . , hm−1 are
m − 1 specified real numbers. Let ψ(x) be a non-negative function defined on
the phase space with 0 <

∫
X ψ(x)dx < ∞, and gi = ∫

Ei
ψ(x)dx. If X is finite

and ψ(x) ≡ 1, then gi is the number of configurations contained in the subregion
Ei . If ψ(x) = exp{−H (x)/τ }, then gi is the partition function of the truncated
distribution of f (x) on the subregion Ei . Let π = (π1, . . . , πm), where πi denotes
the desired (relative) sampling frequency of the subregion Ei , 0 < πi < 1, and∑m

i=1 πi = 1. The CMC simulation can be described as follows. Let ĝ(t)
i denote

the working estimate of gi at iteration t , ĝ(t) = (̂g(t)
1 , . . . , ĝ(t)

m ), and

f̂ (t)(x) = 1

Zt

m∑
i=1

ψ(x)

ĝ(t)
i

I (x ∈ Ei ), (2)

denote the working density at iteration t , where Zt is the partition function of
f̂ (t)(x), and I (·) is the indicator function. In the working density (2), if the phase
space is partitioned according to the energy function, each subregion Ei associates
with a different weight ĝi . In this sense, the algorithm is called contour Monte
Carlo. Let x(t)

k , k = 1, . . . , L , denote samples drawn from f̂ (t)(x), and y(t) =
(y(t)

1 , . . . , y(t)
m ) denote the realized sampling frequency of the m subregions by

the L samples, where y(t)
i = 1

L

∑L
k=1 I (x(t)

k ∈ Ei ). One iteration of CMC consists
of the following two steps. Note that in the initial iteration, we have t = 0 and
log ĝ(0)

1 = · · · = log ĝ(0)
m = 0.
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(a) (Sampling) Draw sample x(t)
k , k = 1, . . . , L , from the working density

f̂ (t)(x) as defined in (2).
(b) (Weight updating) Update the working estimates of gi ’s in the following

manner,

log ĝ(t+1)
i = log ĝ(t)

i + δt (y(t)
i − πi ), i = 1, . . . , m (3)

where δt is called the weight modification factor.

In CMC, {δt : t = 0, 1, 2, . . .}, which will be simplified to {δt } later, is a sequence
of positive, non-increasing numbers satisfying the condition

∞∑
t=0

δt = ∞ and
∞∑

t=0

δ2
t < ∞. (4)

The algorithm iterates till δt has been a very small number, say, a number less than
10−8.

A brief explanation of condition (4) is as follows. The first condition is a
necessary condition for the convergence of log ĝ(t)

i to log(gi ). If
∑∞

t=0 δt = C <

∞, then, as follows from (3),

∞∑
t=0

| log ĝ(t+1)
i − log ĝ(t)

i | ≤
∞∑

t=0

δt |y(t)
i − πi | ≤

∞∑
t=0

δt = C < ∞,

where the second inequality holds because both y(t)
i and πi lie in the interval

[0, 1]. Thus, the value of log ĝ(t)
i does not reach log(gi ) as t → ∞ if, for example,

the initial point log ĝ(0)
i is sufficiently far away from log(gi ). On the other hand,

neither should the number δt be too large. Otherwise, the random errors will
prevent convergence. It turns out that the condition

∑∞
t=0 δ2

t < ∞ asymptotically

damps the effect of the random errors introduced by y(t)
i ’s. When it holds, we have

δt |y(t)
i − πi | ≤ δt → 0, as t → ∞.
There are many ways to choose the sequence {δt } to satisfy the condition (4).

For example, in this paper we set

δt = κ

max(κ, t)
, t = 0, 1, 2, . . . , (5)

for some specified value of κ . A large value of κ will allow the sampler to reach
all subregions very quickly even for a large system. The choice of κ should not
affect the convergence of the algorithm. However, a good choice of κ may make
the algorithm perform more stably and save computation time. This is illustrated
in Section IV by a numerical example.

At each iteration, the samples x(t)
1 , . . . , x(t)

L can be drawn using a conventional
MCMC algorithm, say, the Metropolis-Hastings (MH)(6) algorithm, starting with
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the last sample obtained in the preceding iteration. The sample size L should be
chosen such that the equalities

E
(
y(t)

i

) = S(t)
i

/
S(t), i = 1, . . . , m, (6)

hold for large t , where S(t)
i = ∫

Ei
ψ(x)dx/ĝ(t)

i and S(t) = ∑m
j=1 S(t)

j . According to
the standard MCMC theory, we know that (6) holds when L is large, even if the
samples x(t)

1 , . . . , x(t)
L are correlated. In practice, L should be chosen according

to the autocorrelation time of the sample sequence. The longer autocorrelation
time the sequence has, the large value of L we should choose. For example,
we can set L to a multiple of the integrated autocorrelation time of the sample
sequence. Fortunately, when t is large, CMC is reduced to an approximately
“random walk” in the space of subregions (if each subregion is regarded as a
“point”) with the visiting frequency to each of the subregions being proportional
to the corresponding desired sampling frequency. Hence, L is not required to be
very large at this stage. When t is small, we do not care too much whether the
equalities in (6) hold or not, as the work at this stage is just to prepare “initial”
values for the latter stages. The self-adjusting mechanism of CMC, i.e., adjusting
the value of 1/ĝ(t)

i and thus, the sampling probability of the subregion Ei in the
adverse direction of the realized sampling frequency of the subregion Ei , warrants
the success of the “initialization” process. Note that the multicanonical algorithm
and the Wang-Landau algorithm have the same self-adjusting mechanism. In our
experience, a value of L between 10 and 100 is appropriate for most problems.
Our numerical results reported in Section 4 indicate that the choice of L does not
affect the accuracy of the CMC estimates significantly.

If the desired sampling distribution is chosen to be a uniform distribution,
i.e., π1 = · · · = πm = 1/m, the weight updating step can be simplified to

log ĝ(t+1)
i = log ĝ(t)

i + δt y(t)
i , i = 1, . . . , m, (7)

as adding to or subtracting from log ĝ(t)
i ’s a constant will not change f̂ (t)(x) and

the simulation process.
The desired sampling distribution π can be chosen to bias sampling to the

low energy region, although in this paper the algorithm is demonstrated by setting
it to be the uniform distribution. As shown in Ref.(7,8), biasing sampling to the low
energy region often results in a run with improved ergodicity. This makes CMC
attractive for use in hard optimization problems. This also makes CMC more
flexible than the multicanonical and WL algorithms. In the latter two algorithms,
each subregion has to be sampled equally.

At last, we would like to mention that the generalization of ψ(x) from a con-
stant to a general non-negative function is useful. First, it extends the application
of the flat histogram algorithms to continuum systems. Second, it leads to a great
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deal of applications of the flat histogram algorithms in model selection(9), and it
is of interest to statisticians.

3. CONVERGENCE PROPERTY OF FLAT HISTOGRAM ALGORITHMS

CMC falls into the category of stochastic approximation algorithms(10−−12).
Based on the theory of stochastic approximation, we provide a proof for its conver-
gence. The proof is simple, which is just to verify the conditions given in Blum(11).
(See Appendix for the details.) In CMC, the phase space partition can be made
blindly. This may lead to that some of the subregions are empty. In this paper, a
subregion Ei is called empty if

∫
Ei

ψ(x)dx = 0. As t → ∞, we have

log ĝ(t)
i →

 c + log

(∫
Ei

ψ(x)dx

)
− log(πi + ν), Ei �= ∅,

−∞, Ei = ∅,

(8)

where ν = ∑
j∈{i :Ei =∅} π j/(m − m0) and m0 is the number of empty subregions,

and c is a constant which can be determined with some extra information on the
system. For example, in simulation from an Ising model, if ψ(x) = 1 then c can be
determined with the information that

∑m
i=1 gi is known. See Appendix for more

discussions on the issue.
After convergence, CMC will be reduced to a random walk in the space of

subregions with the visiting frequency to each of the subregions being proportional
to the corresponding desired sampling frequency. Based on this observation, the
convergence of CMC can be diagnosed as follows. Let π̂i denote the sampling
frequency of the subregion Ei in the simulation. We define

ε f (Ei ) =


π̂i − (πi + ν)

πi + ν
× 100%, Ei �= ∅,

0, Ei = ∅,

for i = 1, . . . , m, for assessing the difference of the realized sampling distribution
from the desired one. If maxm

i=1 ε f (Ei ) is large, say, greater than 10 percents, the
convergence of the simulation should be questioned. In this case, CMC should be
re-run with more iterations or a large value of κ . The number of iterations and
κ should be tuned such that maxm

i=1 ε f (Ei ) falls into a satisfactory interval, say,
±5%.

CMC is closely related to the multicanonical algorithm(1,13). If X is finite,
ψ(x) ≡ 1, π1 = · · · = πm = 1

m , and the weight updating scheme is modified ap-
propriately, CMC can be reduced to the multicanonical algorithm. In the multi-
canonical algorithm, the initial estimate of gi can be obtained via a short simulation
from the distribution f (x), and then the estimate log(ĝ(t)

i ) evolves with iterations
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as follows:

log
(
ĝ(t+1)

i

) = c + log
(
ĝ(t)

i

)+ log
(
π̂ (t)(Ei ) + αi

)
, i = 1, . . . , m (9)

where the constant c is introduced to ensure that log(̂g(t+1)
i ) is an estimate of log(gi ),

π̂ (t)(Ei ) is the (unnormalized) sampling frequency of the subregion Ei at iteration
t , and α1, . . . , αm are small positive numbers which serve as “prior counts” to
smooth out the estimates ĝi ’s. Since the multicanonical algorithm assumes that
the simulation from the working density f̂ (t)(x) has reached equilibrium before
proceeding to the weight updating step, the relation

π̂ (t)(Ei ) ∝
∫

Ei
ψ(x)dx

ĝ(t)
i

= gi

ĝ(t)
i

, i = 1, . . . , m, (10)

should approximately hold. Substituting (10) into (9), we have

log
(
ĝ(t+1)

i

) = c + log(gi ), i = 1, . . . , m, (11)

which implies the validity of the algorithm for estimating gi ’s (up to a multiplicative
constant).

CMC is also closely related to the WL algorithm(2). If X is finite, ψ(x) ≡ 1,
π1 = · · · = πm = 1/m, each x(t)

1 is drawn with only one MH step (i.e., L = 1),
and the sequence {δt } is specified appropriately, then CMC can be reduced to the
WL algorithm. The WL simulation consists of a number of stages. Each stage
associates with a different value of δt . Let s denotes the total number of stages,
t(i)’s denote the change points of stages, and δ(i) denote the common value of δt at
stage i . Then δt can be expressed as a piecewise constant function of t ,

δt =



δ(1), t(0) ≤ t < t(1),

δ(2), t(1) ≤ t < t(2),

· · ·
δ(s), t(s−1) ≤ t < t(s),

(12)

where t(0) = 1, and t(s) is the total number of iterations of the run. In WL, {δ(i), i =
1, . . . , s} is usually set to a geometrically decreasing sequence, say,

δ(i+1) = 1

2
δ(i), i = 1, 2, . . . , (13)

as suggested in Wang and Landau(2). The t(i)’s are chosen such that the samples
generated between the iterations t(i−1) and t(i) form a flat histogram in the space
of subregions. Clearly, the sequence {δt } defined in (12) and (13) violates the
condition (4). Due to the violation, the above theory established for the CMC
algorithm is not directly applicable to the WL algorithm. However, we note that
the CMC theory is still relevant to the WL algorithm in some sense if the sequence
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Table I. The unnormalized mass function of the 10-state distribution

x 1 2 3 4 5 6 7 8 9 10
P(x) 1 100 2 1 3 3 1 200 2 1

{δt } is modified as follows. Let L ′
(i) = t(i) − t(i−1) denote the number of iterations

performed at stage i . If the equality L ′
(i+1)/L ′

(i) = δ(i)/δ(i+1) holds for all stages
i = 1, 2, . . .; that is, L ′

(i) increases geometrically with the rate δ(i)/δ(i+1), then the

condition (4) is satisfied. If we further assume that x(t)
1 is an exact sample drawn

from f̂ (t)(x), then the CMC theory is completely applicable to the WL algorithm.
However, the assumption that x(t)

1 is an exact sample of π̂ (t)(x) is questionable.
We note that under this assumption, a theoretical study has been done by Zhou
and Bhatt(14), where an analytic proof is established for the the convergence of the
WL algorithm. They show the convergence of the density-of-state estimates by
showing the convergence of the histograms, while our argument is made for the
density-of-state estimates directly.

4. NUMERICAL RESULTS

In the following example we compare the efficiency of the multicanonical,
WL and CMC algorithms. The distribution of the example consists of 10 states
with the unnormalized mass function P(x) as specified in Table 1. It has two
modes which are well separated by low mass states.

The state space was partitioned according to the mass function into the
following five subregions: E1 = {8}, E2 = {2}, E3 = {5, 6}, E4 = {3, 9}, and
E5 = {1, 4, 7, 10}. The three algorithms, multicanonical, Wang-Landau and CMC,
are all applied to estimate the density of states for this example. The true value
of g is g = (1, 1, 2, 2, 4), which is equal to the number of states in the respec-
tive subregions. The following statistic is defined to assess the accuracy of the
estimate,

εg =
√√√√ m∑

i=1

(̂gi − gi )2/gi ,

where ĝ = (̂g1, . . . , ĝm) denotes an estimate of g obtained using above algorithms.
Since the energy function is evaluated once in each MH step, we measure the CPU
cost of each run by the total number of MH steps or, equivalently, the total number
of energy evaluations performed in the run. In the following, we denote by N the
total number of energy evaluations of a run, and denote by n the total number of
iterations.

To evaluate the performance of the multicanonical algorithm, the algorithm
was run with different values of N = 50000, 100000, 150000, 200000, and
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Fig. 1. Comparison of (a) the multicanonical algorithm, (b) the WL algorithm, and (c) the CMC
algorithm. The vertical segments show the ±one-standard deviation of ε̄g’s.

250000. For each value of N , different choices of L and n are tried. The choices
of L include L = 500, 1000, 5000, 10000, and 25000. The n is set accordingly
such that the equality N = nL holds for all runs. For each choice of (N , L), the
algorithm was run for 100 times independently. In each run, gi ’s are estimated
in Eq. (9) with the prior counts α1 = · · · = α5 = 0.1, and εg is calculated for
assessing the accuracy of the estimates. Let ε̄g denote the average of εg’s over the
100 runs. Figure 1(a) shows the ε̄g’s resulted from the 25 choices of (N , L). From
the plot, it is easy to see that for the multicanonical algorithm, the accuracy of the
estimates is mainly determined by L . The larger value of L , the higher accuracy
of the estimates. For a given value of L , the accuracy of the estimates can not be
significantly improved by increasing the value of N . This observation may seem
a little bit surprise to us. But it can be understood from Eqs. (10) and (11) as
follows. These two equations imply the Markovian property of the estimates ĝ(t)’s.
Conditional on ĝ(t), the next iteration estimate ĝ(t+1) is independent of the previ-
ous estimates ĝ(t−1), . . . , ĝ(1). Suppose that the estimate ĝ(t) has reached a certain
accuracy. In order to improve further its accuracy, the only way is to increase the
value of L in the later iterations of the run. Otherwise, the accuracy of the follow-
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on estimates, ĝ(t+1), ĝ(t+2), . . ., will be limited by the accuracy of π̂ (Ei )’s, which
is determined by L , the number of MH steps performed in each iteration. Hence,
in the multicanonical algorithm, the estimates can only reach a certain accuracy
limited by L , the estimates will not be improved with further more iterations if L
does not increase with iterations.

To evaluate the performance of the WL algorithm, the algorithm was run
with the same choices of N as for the multicanonical algorithm. For simplicity,
in each run we set δ(1) = 1, δ(i+1) = 0.5δ(i), and L ′

(i)’s to a constant which has
been large enough such that a flat histogram can be formed during each stage of
the simulation. Let L ′ denote the constant. The choices of L ′ we tried include
L ′ = 1000, 2500, 5000, and 10000. Given N and L ′, n is set to the quotient
N/L ′. For each choice of (N , L ′), the WL algorithm was run for 100 times
independently. Figure 1(b) shows ε̄g’s resulted from the 20 choices of (N , L ′).
This plot shows that the accuracy of the WL estimates are mainly determined by
L ′. For a given value of L ′, once the estimate has reached a certain accuracy, it
can not be improved significantly with further more iterations. This is consistent
with the finding of Yan and Pablo(15). This phenomenon can be understood from
the design of the algorithm. If L ′

(1) = · · · = L ′
(s) = · · · = L ′ is finite, and {δ(i)} is a

sequence decreasing geometrically, then the tail sum
∑∞

t=T +1 δt < ∞ for any value
of T . Hence, The large number of configurations generated towards the end of the
simulation make only a small contribution to the estimates. For the WL algorithm,
we have also tried the choice of {δt } that L ′

(i) increases geometrically with the rate
δ(i)/δ(i+1). The tendency that the estimates can be improved continuously has been
observed. However, this leads to an explosion of the total number of iterations
required by the simulation.

To evaluate the performance of the CMC algorithm, the algorithm was also
run with the same choices of N as for the above two algorithms. For each value N ,
the following choices of L are considered, L = 10, 20, 50, 100, and 500. For each
choice of (N , L), n is set to the quotient n = N/L , κ is set to 10, and CMC was
run for 100 times independently. Figure 1(c) shows the ε̄g’s resulted from the 25
choices of (N , L). This plot indicates that CMC produces more accurate estimates
than the multicanonical and WL algorithms for all choices of (N , L) given above.
More importantly, these estimates can be improved continuously by increasing the
value of N . The plot also indicates that for a given value of N , the choice of L has
not much effect on the estimates.

As mentioned before, the convergence of CMC can be diagnosed by exam-
ining the values of ε f (Ei )’s at the end of the simulation. Figure 2 summarizes
the values of ε f (Ei )’s calculated for the 100 runs with the setting N = 100000,
L = 10, and κ = 10. The five box-plots correspond to the five subregions re-
spectively. All ε f (Ei )’s lie in the interval of ±3%. This indicates that all of
the 100 runs have converged. The plots for the other choices of (N , L) are
similar.
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Fig. 2. Box-plots of ε f (Ei )’s obtained in the 100 CMC runs with the setting N = 100000, L = 10,
and κ = 10.

Later, CMC was re-run with different values of κ = 5, 10 and 20. The
choices of (N , L) are the same as described above. For each choice of (N , L , κ),
the algorithm was also run for 100 times independently. The numerical results of
these runs are summarized in figure 3. The plots show that κ affects the accuracy
of the estimates significantly. For this example, the choice κ = 5 outperforms
the other two choices κ = 10 and κ = 20. The choice κ = 2 has also been tried,
but the results are inferior to that produced with κ = 5. On the choice of κ , our
suggestion is as follows. Try a number of choices for κ and choose the minimum
one which produces satisfactory ε f (Ei )’s.

APPENDIX A

The appendix is organized as follows. In Section A, we describe a theorem
for the convergence of the CMC algorithm. In Section B, we present a generalized
version of Blum’s theorem(11), which shows the convergence for a multidimen-
sional stochastic approximation algorithm. In Section C, we prove the theorem
given in Section A based on the generalized Blum’s theorem.
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Fig. 3. Computational results of CMC with different choices of κ . (a) κ = 5; (b) κ = 10; (c) κ = 20.

A.1. A Convergence Theorem for the CMC Algorithm

Without loss of generality, we only show the convergence presented in Eq. (8)
for the case that all subregions are non-empty or, equivalently, ν = 0. Extension
to the case ν �= 0 is trivial, because changing step (b) of the CMC algorithm to
(b′) (given below) will not change the simulation process.

(b′) set log ĝ(t+1)
i = log ĝ(t)

i + δt

[
y(t)

i − (πi + ν)
]

for all non-empty subregions.

Note that the empty subregions will never be visited during the simulation.
To simplify notations, in the following we denote log ĝ(t)

i by θ
(t)
i , and denote

(log ĝ(t)
1 , . . . , log ĝ(t)

m ) by θ (t) = (θ (t)
1 , . . . , θ

(t)
m ).

Theorem 1. Let E1, . . . , Em be a partition of the phase space X , ψ(x) be a
non-negative function defined on X with 0 <

∫
X ψ(x)dx < ∞, and θ (0) be an

arbitrary m-vector. Let x(t)
1 , . . . , x(t)

L be samples drawn from the distribution

f̂ (t)(x) ∝
m∑

i=1

ψ(x)

eθ
(t)
i

I (x ∈ Ei ), t = 0, 1, 2, . . . . (14)
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Define y(t) = (y(t)
1 , . . . , y(t)

m ), where

y(t)
i = 1

L

L∑
k=1

I
(
x(t)

k ∈ Ei

)
Let θ (t) be iterated in the following manner,

θ (t+1) = θ (t) + δt ( y(t) − π), (15)

where π = (π1, . . . , πm) be a m-vector with 0 < πi < 1 and
∑m

i=1 πi = 1. If {δt }
satisfies the following condition

∞∑
t=0

δt = ∞,

∞∑
t=0

δ2
t < ∞.

then

P

{
lim

t→∞ θ
(t)
i = c + log

(∫
Ei

ψ(x)dx

)
− log(πi )

}
= 1, i = 1, . . . , m, (16)

where c is an arbitrary constant.

Since the distribution f̂ (t)(x) defined in (14) is invariant with respect to a
shift transformation of θ (t); that is, (θ (t)

1 , . . . , θ
(t)
m ) and (θ (t)

1 + a, . . . , θ
(t)
m + a) (a is

an arbitrary constant) result in the same distribution f̂ (t)(x), the constant c in (16)
can not be determined with the samples drawn from f̂ (t)(x) only. To determine the
value of c, we need extra information on the system. For example, in simulation
from an Ising model of size l × l, if ψ(x) = 1, then c can be determined as

c = log
(∑

i

πi e
θ

(t)
i

)
− l2 log(2),

with the information that
∑

i gi = ∑
i

∫
Ei

ψ(x)dx = 2l2
. We note that the mul-

ticanonical and WL algorithms both suffer from the same problem, i.e., gi ’s can
only be determined up to a multiplicative constant.

A.2. BLUM’S Theorem on the Convergence of a Multivariate

Stochastic Approximation Algorithm

Lemma 2. Let zt be a sequence of integrable random variables which satisfy the
condition

∞∑
t=1

E{E(zt+1 − zt |z1, . . . , zt )
+} < ∞,
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and are bounded below uniformly in t . Then zt converges almost surely to a random
variable.

In the lemma, (z)+ is defined by (z)+ = 1
2 (z + |z|). This lemma corresponds

to the corollary stated in Section 3 of Blum’s paper [11].
Theorem 3 is a slight generation of Theorem 1 of Blum’s paper(11). Blum

shows the convergence of a stochastic approximation sequence to a single point
of the parameter space, while Theorem 3 shows the convergence of a stochastic
approximation sequence to a subset of the parameter space by adding one more
condition (A.3) as stated below. However, the proofs are almost the same. The
condition (A.3) is a necessary condition for (20) and (23). It is obvious that a
single-point solution set satisfies the condition (A.3) automatically.

Let θ = (θ1, . . . , θm) be a point in 
, where 
 is a real m-dimensional
vector space spanned by m orthogonal unit vectors. Let yθ = (yθ,1, . . . , yθ,m)
be a vector of m random variables with corresponding families of distributions
{F (1)

θ }, . . ., {F (m)
θ }, each depending on m real variables θ = (θ1, . . . , θm). Let

µi (θ ) = ∫∞
−∞ yd F (i)

θ , i = 1, . . . , m be the corresponding expectation functions.

Here it is assumed that the distributions {F (i)
θ } and the expectation functions µi (θ )

are unknown; however, it is possible to make an observation on the random vector
yθ for any choice of θ ∈ 
. Let µ(θ ) = (µ1(θ ), . . . , µm(θ )). Let ω(θ ) be a real-
valued function defined on 
 and possessing continuous partial derivatives of the
first and second order, the vector of first partial derivatives will be denoted by d(θ )
and the matrix of second partial derivatives by A(θ ); that is,

d(θ ) =
(

∂ω

∂θi

) ∣∣∣∣
θ

, A(θ ) =
(

∂2ω

∂θi∂θ j

) ∣∣∣∣
θ

.

Then, for any real number δ, we have by Taylor’s theorem

ω(θ + δ( yθ − π)) = ω(θ ) + δdT (θ )( yθ − π ) + 1

2
δ2[( yθ − π )T

+ A(θξδ( yθ − π))( yθ − π )],

where ξ is a real number with 0 ≤ ξ ≤ 1, π is a known m-vector, and bT denotes
the transpose of the vector b. Consequently we may take expectations on both
sides to obtain

Eω(θ + δ( yθ − π)) = ω(θ ) + δdT (θ )(µ(θ ) − π )

+1

2
δ2 E[( yθ − π )T A(θ + ξδ( yθ − π ))( yθ − π)]. (17)

To simplify writing we employ the following notations:

u(θ ) = dT (θ )(µ(θ ) − π), vδ(θ ) = E[( yθ − π )T A(θ + ξδ( yθ − π ))( yθ − π)].
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Let ‖b‖ denotes the norm of the vector b. Consider now the following conditions:

A.1:
∑∞

t=1 δt = ∞,
∑∞

t=1 δ2
t < ∞.

A.2: ω(θ ) ≥ 0.
A.3: There exists a nonempty set 
0 = {θ : µi (θ ) = πi , i = 1, . . . , m; θ ∈


}, ω(θ ) is a constant over the set 
0, and the interior set of 
0 is empty.
A.4: sup{θ /∈
0,inf θ̃∈
0

‖θ−θ̃‖>ε} u(θ ) < 0 for every ε > 0.

A.5 : inf {θ /∈
0,inf θ̃∈
0
‖θ−θ̃‖>ε} |ω(θ ) − ω(θ̃ )| > 0 for every ε > 0.

A.6 : vδ(θ ) ≤ V < ∞ for every number δ.

Theorem 3. Assume the following conditions are satisfied: (i) the sequence {δt }
satisfies A.1; (ii) there exists a real-valued function ω(θ ) with continuous first and
second partial derivatives satisfying A.2, . . . , A.6; (iii) the sequence θ (t) iterates
in the following manner,

θ (t+1) = θ (t) + δt ( yθ (t) − π ). (18)

Then θ (t) converges almost surely to the set 
0; that is,

P
{

lim
t→∞ θ (t) ∈ 
0

} = 1.

Proof: To simplify notations, we let zt = ω(θ (t)) and z0 = ω(θ̃ ) for every θ̃ ∈

0, ut = u(θ (t)), and vt = vδt (θ

(t)). From equation (17) one obtains

E(zt+1|z1, . . . , zt ) = zt + δt E(ut |z1, . . . , zt ) + δ2
t

2
E(vt |z1, . . . , zt ) a.s. (19)

Since µ(θ̃ ) − π = 0 for every θ̃ ∈ 
0, we have, by virtue of conditions A.2–A.6,

E(ut |z1, . . . , zt ) ≤ 0 a.s., E(vt |z1, . . . , zt ) ≤ V a.s., (20)

both for all t . Hence,

E(zt+1 − zt |z1, . . . , zt ) ≤ 1

2
δ2

t V a.s. (21)

By conditions A.1 and A.2 and Lemma 2 one obtains

P(zt converges) = 1. (22)

Taking expectations on both sides of (19) and iterating, we have

E(zt+1) = z1 +
t∑

j=1

δ j E(u j ) + 1

2

t∑
j=1

δ2
j E(v j ).
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From the condition A.2 and from the property of expectation of conditional
expectation it follows that

E(zt ) ≥ 0, E(ut ) ≤ 0, E(vt ) ≤ V (n = 1, 2, . . .).

Since V is non-negative and the series
∑∞

t=1 δ2
t converges, the nonpositive term

series
∑∞

t=1 δt E(ut ) also converges. By virtue of the fact that
∑∞

t=1 δt = ∞ we
have

lim
t→∞ sup E(ut ) = 0, lim

t→∞ inf E(|ut |) = 0.

Let {tr } be an infinite sequence of integers such that

lim
r→∞ E(|utr |) = 0.

Then utr converges to zero in probability due to Markov’s inequality and there
exists a further subsequence, say {umr } such that

P
{

lim
r→∞ umr = 0

} = 1.

From condition A.4 it follows that P{limr→∞ θ (mr ) ∈ 
0} = 1. Since zt is a con-
tinuous function of θ (t) it follows from (22) and condition (A.3) that

P
{

lim
t→∞ zt = z0

} = 1. (23)

Now consider a sample sequence {θ (t)} such that for the corresponding sequence
{zt } one has limt→∞ zt = z0. From condition A.5 it is obvious that for such a
sequence one must have

P
{

lim
t→∞ θ (t) ∈ 
0

} = 1;

otherwise it will lead to a contradiction of A.5. The proof is completed. �

A.3. Proof of Theorem 1

Proof: To prove this theorem, we only need to verify the conditions of Theorem
3.

Let F (i)
θ (t) be a Bernoulli distribution with the success probability

p(i)
θ (t) =

∫
Ei

ψ(x)dx/eθ
(t)
i∑m

k=1

[ ∫
Ek

ψ(x)dx/eθ
(t)
k

] ,
for i = 1, . . . , m. For simplicity, we define Si = ∫

Ei
ψ(x)dx/eθ

(t)
i and S =∑m

k=1 Sk . Assuming that x(t)
1 , . . . , x(t)

L are drawn from f̂ (t)(x) using a MCMC
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algorithm, we have

µi (θ ) = Ey(t)
i = p(i)

θ (t) = Si

S
, i = 1, . . . , m. (24)

Here L can be a reasonably large number.
To simplify notations, in the following we will denote θ (t) by θ and θ

(t)
i by θi ,

by dropping the superscript t .

(i) By the assumption for {δt }, condition A.1 is satisfied.
(ii) Let ω(θ ) = 1

2

∑m
k=1( Sk

S − πk)2. Therefore, the condition A.2 is satisfied.
As shown below, ω(θ ) has continuous partial derivatives of the first and
second order.

(iii) Solving the system of equations formed by (24), we have


0 =
{

(θ1, . . . , θm) : θi = c + log

(∫
Ei

ψ(x)dx

)

− log(πi ), i = 1, . . . , m; θ ∈ 


}
,

where c = − log(S). It is obvious that 
0 is nonempty and ω(θ̃ ) = 0 for
every θ̃ ∈ 
0. The one-to-one correspondence of c and S implies the
completeness of 
0; that is, 
0 has included all θ ’s which solve the equation
µ(θ ) = π .

The set 
0 forms a line in the space 
, as it contains only one free
parameter c. Therefore, the interior set of 
0 is empty. Condition A.3 is
satisfied.

(iv) To show condition A.4 is satisfied, we have the following calculations.

∂S

∂θi
= ∂Si

∂θi
= −Si ,

∂Si

∂θ j
= ∂Sj

∂θi
= 0,

∂
( Si

S

)
∂θi

= − Si

S
(1 − Si

S
),

∂
( Si

S

)
∂θ j

= ∂
( Sj

S

)
∂θi

= Si S j

S2
,

(25)
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for i, j = 1, . . . , m and i �= j .

∂ω(θ )

∂θi
= 1

2

m∑
k=1

∂
( Sk

S − πk

)2

∂θi

=
∑
j �=i

(
Sj

S
− π j

)
Si S j

S2
−
(

Si

S
− πi

)
Si

S

(
1 − Si

S

)

=
m∑

j=1

(
Sj

S
− π j

)
Si S j

S2
−
(

Si

S
− πi

)
Si

S

= M
Si

S
−
(

Si

S
− πi

)
Si

S
,

(26)

for i = 1, . . . , m, where one defines M = ∑m
j=1( Sj

S − π j )
Sj

S . Thus,

u(θ ) = dT (θ )(µ(θ ) − π ) =
m∑

i=1

[
M

Si

S
−
(

Si

S
− πi

)
Si

S

](
Si

S
− πi

)

= −


m∑
i=1

(
Si

S
− πi

)2 Si

S
−
[

m∑
i=1

(
Si

S
− πi

)
Si

S

]2


= −σ 2
η ≤ 0,

where σ 2
η denotes the variance of the discrete distribution defined in the

following table,

State (η) S1
S − π1 · · · Sm

S − πm

Prob. S1
S · · · Sm

S

If θ ∈ 
0, u(θ ) = 0; otherwise u(θ ) < 0. Therefore, condition A.4 is sat-
isfied.

(v) By the construction of ω(θ ) and the completeness of 
0, it is obvious that
condition A.5 is satisfied.

(vi) Based on (26) and (25), we have the following calculations:

∂ M

∂θi
=
∑
k �=i

[
2

Si S2
k

S3
− πk

Si Sk

S2

]
− 2

S2
i

S2

(
1 − Si

S

)
+ πi

Si

S

(
1 − Si

S

)

= Si

S

[
m∑

k=1

S2
k

S2
+ M − 2

Si

S
+ πi

]
,

(27)
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∂2ω(θ )

∂θ2
i

= ∂
[
M Si

S − ( Si

S − πi

) Si

S

]
∂θi

= −M
Si

S

(
1 − Si

S

)
+ Si

S

∂ M

∂θi
+ 2

S2
i

S2

(
1 − Si

S

)
− πi

Si

S

(
1 − Si

S

)

= S2
i

S2

[
m∑

k=1

S2
k

S2
+ 2M − 4

Si

S
+ 2πi + 2

]
− Si

S
(M + πi ),

(28)
and

∂2ω(θ )

∂θi∂θ j
= ∂

[
M Si

S − ( Si

S − πi

) Si

S

]
∂θ j

= Si S j

S2
M + Si

S

∂ M

∂θ j
−
[

2
S2

i S j

S3
− πi

Si S j

S2

]

= Si S j

S2

[
m∑

k=1

S2
k

S2
+ 2M − 2

Si

S
− 2

Sj

S
+ πi + π j

]
.

(29)

Since 0 ≤ Si/S ≤ 1, 0 ≤ πi ≤ 1 and |M | ≤ 1, both | ∂2ω(θ)
∂θ2

i
| and | ∂2ω(θ)

∂θi ∂θ j
|

are bounded above by a constant. Therefore, vδ(θ ) is bounded above by a
constant for every number δ. Hence, the condition A.6 is satisfied.

The proof is completed. �
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